Study of air bubble induced light scattering effect on the image quality in 193 nm immersion lithography

Show full item record

Title: Study of air bubble induced light scattering effect on the image quality in 193 nm immersion lithography
Author: Fan, Yongfa; Lafferty, Neal; Bourov, Anatoly; Zavyalova, Lena; Smith, Bruce
Abstract: As an emerging technique, immersion lithography offers the capability of reducing critical dimensions by increasing numerical aperture (NA) due to the higher refractive indices of immersion liquids than that of air. Among the candidates for immersion liquids, water appears to be an excellent choice due to its high transparency at a wavelength of 193 nm, as well as its immediate availability and low processing cost. However, in the process of forming a water fluid layer between the resist and lens surfaces, air bubbles are often created due to the high surface tension of water. The presence of air bubbles in the immersion layer will degrade the image quality because of the inhomogeneity induced light scattering in the optical path. Therefore, it is essential to understand the air bubble induced light scattering effect on image quality. Analysis by geometrical optics indicates that the total reflection of light causes the enhancement of scattering in the region where the scattering angle is less than the critical scattering angle, which is 92 degrees at 193 nm. Based on Mie theory, numerical evaluation of scattering due to air bubbles, polystyrene spheres and PMMA spheres was conducted for TE, TM or unpolarized incident light. Comparison of the scattering patterns shows that the polystyrene spheres and air bubbles resemble each other with respect to scattering properties. Hence polystyrene spheres are used to mimic air bubbles in studies of lithographic imaging of “bubbles” in immersion water. In direct interference lithography, it is found that polystyrene spheres (2 μm in diameter) 0.3 mm away from the resist surface would not image, while for interferometric lithography at 0.5NA, this distance is estimated to be 1.3 mm. Surprisingly, polystyrene spheres in diameter of 0.5 μm (which is 5 times larger than the interferometric line-width) will not image. It is proposed that “bubbles” are repelled from contact with the resist film by surface tension. The scatter of exposure light can be characterized as “flare”. This work shows that microbubbles are not a technical barrier to immersion lithography.
Record URI: http://hdl.handle.net/1850/11380
Date: 2004

Files in this item

Files Size Format View
BSmithConfProc2004a.pdf 622.0Kb PDF View/Open

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Search RIT DML


Advanced Search

Browse