Dynamic stability of a self-excited elastic beam

Show full item record

Title: Dynamic stability of a self-excited elastic beam
Author: Ziegelmuller, Francisco L.
Abstract: An elastic cantilever beam under pressure contact with a moving web undergoes self-excited vibration that may lead to unstable and even self destructive behavior. The equations of motion for the system are derived from the principle of virtual work and Hamilton's principle using the techniques of the calculus of variations. The beam, being a continuum with infinite degrees of freedom, is approximated by a model with a finite number of degrees of freedom using Galerkin's method. The characteristic equation for the model is examined to determine its dynamic criterion for stability. A parametric study is performed to determine the effects of the beam properties such as beam length (L), extension (W), thickness (h), elastic modulus (E), stiffness (El), beam inclination angle (theta) with respect to moving web, the static and kinematic coefficient of friction (mew)s. (mew)k)- The beam response due to the motion of the contacting web is undertaken to evaluate critical properties to be used as guide in the design of stable beam for such applications.
Record URI: http://hdl.handle.net/1850/11584
Date: 1994-07

Files in this item

Files Size Format View
FZiegelmullerThesis07-1994.pdf 2.558Mb PDF View/Open

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Search RIT DML

Advanced Search