Object detection and tracking using a parts-based approach

Show full item record

Title: Object detection and tracking using a parts-based approach
Author: Clark, Daniel
Abstract: One of the main goals of artificial intelligence is to allow computers to understand the world around them. As humans we extract a large amount of knowledge about the world from our visual perception, and the field of computer vision is determined to give computers access to this same wealth of knowledge. One of the fundamental steps in understanding the world is finding specific objects within our field of view, and the related task of following these objects as they move. In this thesis the Implicit Shape Model algorithm, a local feature-based object detection algorithm, is implemented and used to develop an appearance model and object tracking algorithm based on it. This algorithm is very robust to intraclass variation, and can successfully track objects when both occlusion and non-stationary backgrounds are present. The usefulness of the proposed appearance model is analyzed, and results of the algorithm on real video sequences are presented. Several enhancements to the method are also proposed, and performance in terms of recall and precision is analyzed.
Record URI: http://hdl.handle.net/1850/1167
Date: 2005

Files in this item

Files Size Format View
DClarkThesis092005.pdf 1.282Mb PDF View/Open

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Search RIT DML


Advanced Search

Browse