Preparation and characterization of bulk nanostructures Cu-Co magnetic alloys

Show full item record

Redirect: RIT Scholars content from RIT Digital Media Library has moved from to RIT Scholar Works, please update your feeds & links!
Title: Preparation and characterization of bulk nanostructures Cu-Co magnetic alloys
Author: Gartley, Michael
Abstract: With new fabrication and measurement technologies now readily available, much attention has been focused on nanostructured materials. The sub-micron scale features of these materials gives them unique physical properties. To understand these properties, conventional methods of materials characterization are not always applicable. Therefore, new methods of characterization are needed for these nanostructured materials. In this project, we have developed nanostructured Cu-Co alloys. Alloys contain 0.3-5.0 wt% cobalt. Alloys are solution-annealed such that the cobalt dissolves in the solid copper phase. By subsequently aging the solid solutions with 1.5% Co at lower temperatures, the cobalt precipitates out of solution and forms precipitate particles with sizes ranging from 0-3 00A. The growth rate of these particles is a function of the aging temperature. These sub-micron sized cobalt particles possess interesting and useful magnetic properties. It was found that the Cu-Co solid solutions behave paramagnetically, with their initial susceptibility being proportional to the square of the cobalt content. For the aged alloys, magnetic methods are used to characterize the material. Using vibrating sample magnetometry, we measured saturation magnetization and coercivity. The saturation magnetization is a function of amount of cobalt that has precipitated out of solid solution. Cobalt concentration in solid solution was also obtained from x-ray diffraction analysis. The coercivity is a function of cobalt particle size and shape distribution. These magnetic particles were also characterized by magnetic force microscopy.
Record URI:
Date: 1997-04-07

Files in this item

Files Size Format View
MGartleyThesis04-07-1997.pdf 4.853Mb PDF View/Open

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Search RIT DML

Advanced Search