Design and performance evaluation of a modular imaging spectrometer instrument

Show full item record

Title: Design and performance evaluation of a modular imaging spectrometer instrument
Author: Feng, Xiaofan
Abstract: This thesis involved the design and testing of a modular imaging spectrometer instrument (MISI), which can provide hyperspectral image data at a very high ground resolution. The instrument can serve as an airborne laboratory for many remote sensing applications. The optical/mechanical/electrical system was designed using a system engineering approach with emphasis on system and sub-system modulation transfer function (MTF) analysis. Extensive modeling was used to predict the system performance and to aid the design trade process. Many sensor testing methodologies were developed to evaluate the performance of this electro-optical imaging system. The system engineering approach, the modeling tools developed, and the sensor performance testing methods can also be applied to other electro-optical (EO) imaging systems design and testing. Performance evaluation experiments verify that MISI has met its image quality goals. By using finite element analysis and optical image formation theory, the performance of a high-speed scan mirror was modeled. This model was used as a design tool to aid the development of the scan mirror assembly. A model-based algorithm was developed to derive the MTF of the imaging system from its edge spread function. By using prior information about the system, the MTF can be derived from very noisy edge traces. Finally, an alternative EO imaging system design criterion the information criterion, is investigated as a overall image quality measure. The results show that line-scan imaging system can be optimized informationally by shaping the electronic filter response and detector aperture. The analytical results also show that the traditional line-scan imaging system design does not maximize information, and the informationally optimized design with a diamond-shaped aperture can provide up to 1.5 bits more information than the traditional design over a broad range of radiance fields. Computer simulation confirms that by combining image acquisition and image processing, informationally optimized design tends to maximize image fidelity.
Record URI: http://hdl.handle.net/1850/13183
Date: 1995-12

Files in this item

Files Size Format View
XFengDissertation12-1995.pdf 9.240Mb PDF View/Open

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Search RIT DML


Advanced Search

Browse