Development of low temperature oxidation for crystalline silicon thin film transistor applications

Show full item record

Title: Development of low temperature oxidation for crystalline silicon thin film transistor applications
Author: Rettmann, Ryan
Abstract: Development of thin-film transistor (TFT) backplane technologies has traditionally been limited by the substrate materials used; amorphous (a-Si) or polycrystalline (p-Si) silicon on glass. These materials have lower carrier mobility as compared to traditional crystalline silicon CMOS technologies, resulting in performance limitations. In addition, thermal oxidation is not a viable option for two reasons: oxidation on non-crystalline silicon is non-uniform, and the temperature limitations of the glass, 600 °C, prevents any appreciable SiO2 growth. This constrains the potential for a high-quality Si-SiO2 interface necessary for aggressive scaling. Corning Incorporated has developed a new Silicon-on-Glass (SiOG) substrate material addressing some of these limitations. The crystalline silicon layer allows for high carrier mobility and a uniform surface for thermal oxidation; however the glass substrate remains incompatible with process temperatures above 600°C for traditional oxidation processes. Development of a fluorine-assisted thermal oxidation process enabling substantially higher growth rates is explored. Both NF3 and Ar/F2 additives have been shown to provide significant enhancement in growth rate, resulting in 10's of nanometers of oxide at temperatures compatible with the SiOG substrate. The oxidation process has been optimized for applications such as a sacrificial layer for ion implantation screening, or a gate dielectric in TFT devices.
Record URI: http://hdl.handle.net/1850/13620
Date: 2011-03

Files in this item

Files Size Format View
RRettmannThesis3-2011.pdf 5.235Mb PDF View/Open

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Search RIT DML


Advanced Search

Browse