Positive halogens from halides and hydrogen peroxide with organotellurium catalysts

Show full item record

Title: Positive halogens from halides and hydrogen peroxide with organotellurium catalysts
Author: Detty, Michael; Zhou, Feng; Friedman, Alan
Abstract: The oxidations of sodium bromide, sodium chloride, and sodium iodide to positive halogen with hydrogen peroxide in two-phase systems of dichloromethane and pH 6 phosphate buffer were catalyzed by organotellurium catalysts 1-3. The positive halogens were trapped by cyclohexene for bromine and chlorine to give mixtures of the 1,2-dihalocyclohexane (4) and 2-halocyclohexanol (5). For the bromination (4a)/hydrobromination (5a) of cyclohexene, unoptimized turnover numbers of 1010 mol of product per mole of catalyst for 1, 960 for 2, and 820 for 3 were measured with 4a/5a ratios of 55:45, 53:47, and 52:48, respectively. In cyclohexane, the turnover number for 1 was 150 and the 4a/5a ratio was 68:32. In the uncatalyzed process and in the reaction of aqueous bromine with cyclohexene, the 4a/5a ratio is 55:45 in dichloromethane and 67:33 in cyclohexane. The relative rates of catalysis for equimolar amounts of 1-3 were nearly identical to the relative second-order rate constants for oxidation of the organotellurium compounds with hydrogen peroxide, which suggests that oxidation of the catalyst is the rate-determining step of the process. Stopped-flow studies indicated a rapid reaction (k = 22.5 +/- 0.3 M(-1) s(-1) for iodide and 13.9 +/- 0.5 M(-1) s(-1) for bromide) between halide and oxidized 3 to regenerate catalyst 3. Relative rates of catalysis with 0.1 mol % of 1-3 (relative to cyclohexene) were 4.6 for 1, 2.0 for 2, 1.0 for 3, and 0.11 for the control reaction with no catalyst at 296.1 +/- 0.1 K. Oxidation of chloride with hydrogen peroxide with 1 as a catalyst was much slower but the unoptimized turnover number was 100 with a 4b/5b ratio of 7:93 (10:90 in the uncatalyzed process) in a two-phase cylohexane/aqueous system. Oxidized 3 reacts rapidly with both sodium chloride and sodium bromide to give products from oxidative addition of halogen to the catalyst. Stronger Te-Cl bonds relative to Te-Br bonds slow down the release of the Te(II) state of the catalyst. Positive iodine from catalysis with 1 was trapped by 4-pentenoic acid to give iodomethyl lactone 6.
Record URI: http://hdl.handle.net/1850/2306
Publishers URL: http://dx.doi.org/10.1021/ja953187g
Date: 1996-01-17

Files in this item

Files Size Format View

An open access version of this file is not available. Check "Publisher URL" field for access

This item appears in the following Collection(s)

Show full item record

Search RIT DML

Advanced Search