Stability of time-delay systems

Show simple item record

dc.contributor.author Lee, T. en_US
dc.contributor.author Dianat, Sohail en_US
dc.date.accessioned 2006-12-18T17:38:37Z en_US
dc.date.available 2006-12-18T17:38:37Z en_US
dc.date.issued 1981-08 en_US
dc.identifier.citation IEEE Transactions on Automatic Control 26N4 (1981) 951-953 en_US
dc.identifier.issn 0018-9286 en_US
dc.identifier.uri http://hdl.handle.net/1850/3109 en_US
dc.description Original source of PDF file: http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=1102755&isnumber=24185&punumber=9&k2dockey=1102755@ieeejrns&query=%28dianat+%3Cin%3E+metadata%29+%3Cand%3E+%2824185+%3Cin%3E+isnumber%29&pos=0 en_US
dc.description.abstract This paper gives necessary and sufficient conditions for the stability of time-delay systems of the formdot{x}(t)=A_{1}x(t)+A_{2}x(t-h). These new conditions are derived by Lyapunov's direct method through systematic construction of the corresponding "energy" function. This function is known to exist, if a solutionP_{1}(0)of the algebraic nonlinear matrix equationA_{2} =e^{[A_{1}+P_{1}(0)]h}P_{1}(0)can be determined (Refer to PDF file for exact formulas). en_US
dc.format.extent 302300 bytes en_US
dc.format.mimetype application/pdf en_US
dc.language.iso en_US en_US
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) en_US
dc.relation.ispartofseries vol. 26 en_US
dc.relation.ispartofseries no. 4 en_US
dc.subject Delay systems - linear en_US
dc.subject Lyapunov methods - linear systems en_US
dc.title Stability of time-delay systems en_US
dc.type Article en_US

Files in this item

Files Size Format View
SDianatArticle08-1981.pdf 302.3Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search RIT DML


Advanced Search

Browse