Elastic ladar modeling for synthetic imaging applications

Show full item record

Title: Elastic ladar modeling for synthetic imaging applications
Author: Burton, Robin; Schott, John; Brown, Scott
Abstract: The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is a synthetic imagery generation model developed at the Center for Imaging Science (CIS) at the Rochester Institute of Technology (RIT). It is a quantitative first principle based model that calculates the sensor reaching radiance from the visible through to the long wave infrared on a spectral basis. DIRSIG generates a very accurate representation of what a sensor would see by modeling all the processes involved in the imaging chain. Currently, DIRSIG only models passive sources such as the sun and blackbody radiation due to the temperature of an object. Active systems have the benefit of the user being able to control the illumination source and tailor it for specific applications. Remote sensing Laser Detection and Ranging (LADAR) systems that utilize a laser as the active source have been in existence for over 30 years. Recent advances in tunable lasers and infrared detectors have allowed much more sophisticated and accurate work to be done, but a comprehensive spectral LADAR model has yet to be developed. In order to provide a tool to assist in LADAR development, this research incorporates a first principle based elastic LADAR model into DIRSIG. It calculates the irradiance onto the focal plane on a spectral basis for both the atmospheric and topographic return, based on the system characteristics and the assumed atmosphere. The geometrical form factor, a measure of the overlap between the sensor and receiver field-of-view, is carefully accounted for in both the monostatic and bistatic cases. The model includes the effect of multiple bounces from topographical targets. Currently, only direct detection systems will be modeled. Several sources of noise are extensively modeled, such as speckle from rough surfaces. Additionally, atmospheric turbulence effects including scintillation, beam effects, and image effects are accounted for. To allow for future growth, the model and coding are modular and anticipate the inclusion of advanced sensor models and inelastic scattering.
Description: "Elastic ladar modeling for synthetic imaging applications," Proceedings of Imaging Spectrometry VIII, SPIE volume 4816. The International Society for Optical Engineering. Held in Seattle, Washington: July 2002. Copyright 2002 Society of Photo-Optical Instrumentation Engineers. This paper is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Record URI: http://hdl.handle.net/1850/4226
Date: 2002-11

Files in this item

Files Size Format View
JSchottConfProc11-2002.pdf 353.6Kb PDF View/Open

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Search RIT DML


Advanced Search

Browse