On the nature of critical heat flux in microchannels

Show full item record

Title: On the nature of critical heat flux in microchannels
Author: Bergles, A.; Kandlikar, Satish
Abstract: The critical heat flux (CHF) limit is an important consideration in the design of most flow boiling systems. Before the use of microchannels under saturated flow boiling conditions becomes widely accepted in cooling of high-heat-flux devices, such as electronics and laser diodes, it is essential to have a clear understanding of the CHF mechanism. This must be coupled with an extensive database covering a wide range of fluids, channel configurations, and operating conditions. The experiments required to obtain this information pose unique challenges. Among other issues, flow distribution among parallel channels, conjugate effects, and instrumentation need to be considered. An examination of the limited CHF data indicates that CHF in parallel microchannels seems to be the result of either an upstream compressible volume instability or an excursive instability rather than the conventional dryout mechanism. It is expected that the CHF in parallel microchannels would be higher if the flow is stabilized by an orifice at the entrance of each channel. The nature of CHF in microchannels is thus different than anticipated, but recent advances in microelectronic fabrication may make it possible to realize the higher power levels.
Description: RIT community members may access full-text via RIT Libraries licensed databases: http://library.rit.edu/databases/
Record URI: http://hdl.handle.net/1850/5517
Publishers URL: http://dx.doi.org/10.1115/1.1839587
Date: 2005-01

Files in this item

Files Size Format View

An open access version of this file is not available. Check "Publisher URL" field for access

This item appears in the following Collection(s)

Show full item record

Search RIT DML

Advanced Search