Heat transfer mechanisms during flow boiling in microchannels

Show full item record

Title: Heat transfer mechanisms during flow boiling in microchannels
Author: Kandlikar, Satish
Abstract: The forces due to surface tension and momentum change during evaporation, in conjunction with the forces due to viscous shear and inertia, govern the two-phase flow patterns and the heat transfer characteristics during flow boiling in microchannels. These forces are analyzed in this paper, and two new nondimensional groups, K1 and K2 , relevant to flow boiling phenomenon are derived. These groups are able to represent some of the key flow boiling characteristics, including the CHF. In addition, a mechanistic description of the flow boiling phenomenon is presented. The small hydraulic dimensions of microchannel flow passages present a large frictional pressure drop in single-phase and two-phase flows. The small hydraulic diameter also leads to low Reynolds numbers, in the range 100–1000, or even lower for smaller diameter channels. Such low Reynolds numbers are rarely employed during flow boiling in conventional channels. In these low Reynolds number flows, nucleate boiling systematically emerges as the dominant mode of heat transfer. The high degree of wall superheat required to initiate nucleation in microchannels leads to rapid evaporation and flow instabilities, often resulting in flow reversal in multiple parallel channel configuration. Aided by strong evaporation rates, the bubbles nucleating on the wall grow rapidly and fill the entire channel. The contact line between the bubble base and the channel wall surface now becomes the entire perimeter at both ends of the vapor slug. Evaporation occurs at the moving contact line of the expanding vapor slug as well as over the channel wall covered with a thin evaporating film surrounding the vapor core. The usual nucleate boiling heat transfer mechanisms, including liquid film evaporation and transient heat conduction in the liquid adjacent to the contact line region, play an important role. The liquid film under the large vapor slug evaporates completely at downstream locations thus presenting a dryout condition periodically with the passage of each large vapor slug. The experimental data and high speed visual observations confirm some of the key features presented in this paper.
Description: RIT community members may access full-text via RIT Libraries licensed databases: http://library.rit.edu/databases/
Record URI: http://hdl.handle.net/1850/5520
Publishers URL: http://dx.doi.org/10.1115/1.1643090
Date: 2004-02

Files in this item

Files Size Format View

An open access version of this file is not available. Check "Publisher URL" field for access

This item appears in the following Collection(s)

Show full item record

Search RIT DML

Advanced Search