Reconfigurable hardware for color space conversion

Show full item record

Redirect: RIT Scholars content from RIT Digital Media Library has moved from to RIT Scholar Works, please update your feeds & links!
Title: Reconfigurable hardware for color space conversion
Author: Patil, Sreenivas
Abstract: Color space conversion (CSC) is an important application in image and video processing systems. CSC has been implemented in software and various kinds of hardware. Hardware implementations can achieve a higher performance compared to software-only solutions. Application specific integrated circuits (ASICs) are efficient and have good performance. However, they lack the programmability of devices such as field programmable gate arrays (FPGAs). This thesis studies the performance vs. flexibility tradeoffs in the migration of an existing CSC design from an ASIC to an FPGA. The existing ASIC is used within a commercial color-printing pipeline. Performance is critical in this application. However, the flexibility of FPGAs is desirable for faster time to market and also the ability to reuse one physical device across multiple functions. This thesis investigates whether the reprogrammability of FPGAs can be used to reallocate idle resources and studies the suitability of FPGAs for image processing applications. In the ASIC design, two major conversion units that are never used at the same time are identified. The FPGA-based implementation instantiates only one of these two units at a time, thus saving area. Reconfiguring the FPGA switches which of the two units is instantiated. The goal is to configure the device and process an entire page within one second. The FPGA implementation is approximately a factor of three slower than the ASIC design, but fast enough to process one page per second. In the current setup, the configuration time is very high. It exceeds the total time allotted for both configuration and processing. However, other methods of configuration seem promising to reduce the time. Evaluation of the performance of the implementation and the reconfiguration time is presented. Methods to improve the performance and reduce the time and area for reconfiguration are discussed.
Record URI:
Date: 2008-05

Files in this item

Files Size Format View
SPatilThesis05-2008.pdf 542.6Kb PDF View/Open

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Search RIT DML

Advanced Search