The X-ray spectrum of a planetary nebula at high resolution: Chandra gratings spectroscopy of BD+30 3639

Show simple item record

dc.contributor.author Yu, Young Sam
dc.contributor.author Nordon, Raanan
dc.contributor.author Kastner, Joel
dc.contributor.author Houck, John
dc.contributor.author Behar, Ehud
dc.contributor.author Soker, Noam
dc.date.accessioned 2009-02-23T15:40:40Z
dc.date.available 2009-02-23T15:40:40Z
dc.date.issued 2009
dc.identifier.citation Astrophys.J.690:440-452,2009 en_US
dc.identifier.uri http://hdl.handle.net/1850/8413
dc.description Also archived in: arXiv:0806.2281v2 [astro-ph] en_US
dc.description.abstract We present the results of the first X-ray gratings spectroscopy observations of a planetary nebula (PN), the X-ray-bright, young BD+30 3639. We observed BD+30 3639 for a total of 300 ks with the Chandra X-ray Observatory's Low Energy Transmission Gratings in combination with its Advanced CCD Imaging Spectrometer(LETG/ACIS-S). The LETG/ACIS-S spectrum of BD+30 3639 is dominated by H-like resonance lines of O viii and C sc vi and the He-like triplet line complexes of Ne ix and O vii. Other H-like resonance lines, such as N vii, as well as lines of highly ionized Fe, are weak or absent. Continuum emission is evident over the range 6-18 A. Spectral modeling indicates the presence of a range of plasma temperatures from T~1.7x10^6 K to 2.9x10^6 K and an intervening absorbing column N_H~2.4x10^21 cm-2. The same modeling conclusively demonstrates that C and Ne are highly enhanced, with abundance ratios of C/O~15-45 and Ne/O~3.3-5.0 (90% confidence ranges, relative to the solar ratios), while N and Fe are depleted, N/O~0.0-1.0 and Fe/O~0.1-0.4. The intrinsic luminosity of the X-ray source determined from the modeling and the measured flux (F_X = 4.1x10^-13 ergs cm-2 s-1) is L_X~8.6x10^32 erg s-1(assuming D = 1.2kpc). These gratings spectroscopy results are generally consistent with earlier results obtained from X-ray CCD imaging spectroscopy of BD+30 3639, but are far more precise. The tight constraints placed on the (nonsolar) abundances directly implicate the present-day central star -- hence, ultimately, the intershell region of the progenitor asymptotic giant branch star -- as the origin of the shocked plasma now emitting in X-rays. en_US
dc.language.iso en_US en_US
dc.publisher The Astrophysical Journal en_US
dc.relation.ispartofseries vol. 690 en_US
dc.relation.ispartofseries no. 1 en_US
dc.relation.ispartofseries pp. 440-452 en_US
dc.subject Imaging spectroscopy
dc.subject Planetary nebula
dc.subject X-ray spectroscopy
dc.title The X-ray spectrum of a planetary nebula at high resolution: Chandra gratings spectroscopy of BD+30 3639 en_US
dc.type Article en_US

Files in this item

Files Size Format View
JKastnerArticle2009.pdf 949.9Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record

Search RIT DML


Advanced Search

Browse