Integrating the determinants of suction feeding performance in centrarchid fishes

Show full item record

Title: Integrating the determinants of suction feeding performance in centrarchid fishes
Author: Holzman, Roi; Day, Steven; Mehta, Rita; Wainwright, Peter
Abstract: When suction-feeding vertebrates expand their buccal cavity to draw water into their mouth, they also exert a hydrodynamic force on their prey. This force is key to strike success, directly countering forces exerted by escaping or clinging prey. While the ability to produce high flow accelerations in front of the mouth is central to the predatorʼs ability to exert high forces on the prey, several mechanisms can contribute to the disparity between the potential and realized performance through their effect on flow and acceleration as experienced by the prey. In the present study, we test how interspecific variation in gape size, mouth displacement speed and the fishʼs ability to locate prey at the optimal position affect variation in the force exerted on attached prey. We directly measured these forces by allowing bluegill sunfish and largemouth bass to strike at ghost shrimp tethered to a load cell that recorded force at 5000 Hz, while synchronously recording strikes with a 500 Hz video. Strike kinematics of largemouth bass were slower than that of bluegill, as were estimated flow speeds and the force exerted on the prey. This difference in force persisted after taking into account the faster suction flows and accelerations of bluegill, and was only accounted for by considering interspecific differences in gape size, mouth displacement speed and fishʼs ability to locate the prey at the optimal position. The contribution to interspecific differences in the force exerted on the prey was estimated to be 42% for flow speed, 25% for strike efficiency, 3% for gape size and 30% for mouth displacement speed. Hence, kinematic diversity results in substantial differences in suction performance, beyond those expected based on the capacity to generate a high flow velocity. This functional complexity, in the form of biomechanically independent mechanisms that are recruited for one function, can potentially mitigate performance trade-offs in suction-feeding fishes.
Description: RIT community members may access full-text via RIT Libraries licensed databases:
Record URI:
Publishers URL:
Date: 2008-10-07

Files in this item

Files Size Format View

An open access version of this file is not available. Check "Publisher URL" field for access

This item appears in the following Collection(s)

Show full item record

Search RIT DML

Advanced Search