Sliding mode control applied to an underactuated fuel cell system

Show full item record

Title: Sliding mode control applied to an underactuated fuel cell system
Author: DiFiore, Daniel C.
Abstract: In this work, a method for controlling a nonlinear underactuated system using augmented sliding mode control (SMC) is proposed. SMC requires inversion of the input influence matrix to derive the desired control law. In under or over actuated systems this matrix is nonsquare therefore a true inverse does not exist. The proposed control approach demonstrated in this work involves introducing a transformation matrix mapping the systems input influence matrix to a transformed system that is square and thus invertible. The proposed approach is shown to control selectable states with proper choice of the transformation matrix yielding good control performance. The methodology is applied to an underactuated nonlinear fuel cell system to show its viability in a real world application. A sliding mode controller is derived for the full nonlinear system with a switching gain accounting for modeling errors and uncertainties. Simulation results indicate the viability of the proposed control law and demonstrate the robust nature of the control law in the presence of significant modeling errors while maintaining tracking stability. Finally, the augmented SMC is compared to a traditional linear control architecture illustrating the effectiveness and advantages in tracking performance and control effort over traditional methods.
Record URI: http://hdl.handle.net/1850/9832
Date: 2009-05

Files in this item

Files Size Format View
DDiFioreThesis05-2009.pdf 4.966Mb PDF View/Open

The following license files are associated with this item:

This item appears in the following Collection(s)

Show full item record

Search RIT DML


Advanced Search

Browse